Priestley Duality for Strong Proximity Lattices
نویسندگان
چکیده
In 1937 Marshall Stone extended his celebrated representation theorem for Boolean algebras to distributive lattices. In modern terminology, the representing topological spaces are zero-dimensional stably compact, but typically not Hausdorff. In 1970, Hilary Priestley realised that Stone’s topology could be enriched to yield orderdisconnected compact ordered spaces. In the present paper, we generalise Priestley duality to a representation theorem for strong proximity lattices. For these a “Stone-type” duality was given in 1995 in joint work between Philipp Sünderhauf and the second author, which established a close link between these algebraic structures and the class of all stably compact spaces. The feature which distinguishes the present work from this duality is that the proximity relation of strong proximity lattices is “preserved” in the dual, where it manifests itself as a form of “apartness.” This suggests a link with constructive mathematics which in this paper we can only hint at. Apartness seems particularly attractive in view of potential applications of the theory in areas of semantics where continuous phenomena play a role; there, it is the distinctness between different states which is observable, not equality. The idea of separating states is also taken up in our discussion of possible morphisms for which the representation theorem extends to an equivalence of categories.
منابع مشابه
Distributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملA non-commutative Priestley duality
We prove that the category of left-handed skew distributive lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a noncommutative version of classical Priestley duality for distributive lattices. The result also generalizes the recent development of Stone duality for skew Boolean algebras.
متن کاملDualities in Lattice Theory
In this note we prove several duality theorems in lattice theory. We also discuss the connection between spectral spaces and Priestley spaces, and interpret Priestley duality in terms of spectral spaces. The organization of this note is as follows. In the first section we collect appropriate definitions and basic results common to many of the various topics. The next four sections consider Birk...
متن کاملPriestley Style Duality for Distributive Meet-semilattices
We generalize Priestley duality for distributive lattices to a duality for distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations and are more general than Hansoul’s morphisms....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 158 شماره
صفحات -
تاریخ انتشار 2006